email a friend
printable version
Sociable Lapwing Vanellus gregarius
BirdLife Species Champion Swarovski Optik and RSPB
BirdLife Species Guardian Bombay Natural History Society (BNHS)
For information about BirdLife Species Champions and Species Guardians visit the BirdLife Preventing Extinctions Programme.

This species is listed as Critically Endangered because its population has undergone a very rapid reduction, for reasons that are poorly understood; this decline is projected to continue and increase in the future. Fieldwork in Kazakhstan (and counts in Turkey and the Middle East) has shown the population to be substantially larger than previously feared, but recent demographic studies have found low adult survival, possibly largely driven by hunting pressure along the migration routes and wintering grounds.

Taxonomic source(s)
AERC TAC. 2003. AERC TAC Checklist of bird taxa occurring in Western Palearctic region, 15th Draft. Available at: # _the_WP15.xls#.
Cramp, S.; Perrins, C. M. 1977-1994. Handbook of the birds of Europe, the Middle East and Africa. The birds of the western Palearctic. Oxford University Press, Oxford.
del Hoyo, J.; Collar, N. J.; Christie, D. A.; Elliott, A.; Fishpool, L. D. C. 2014. HBW and BirdLife International Illustrated Checklist of the Birds of the World. Barcelona, Spain and Cambridge UK: Lynx Edicions and BirdLife International.

Chettusia gregaria Collar and Andrew (1988), Chettusia gregaria Cramp and Simmons (1977-1994)

27-30 cm. Strikingly patterned plover. Adult greyish with black and chestnut belly. White supercilium and black crown and eye-stripe. Winter adult brownish but retains supercilium and crown pattern. Juvenile brown, slightly scalloped above, and streaked black below with large white supercilium. Similar spp. White-tailed Lapwing V. leucurus lacks supercilium and crown patch, has longer legs and no black subterminal tail-band. Voice Harsh kretsch kretsch and a rapid chattering.

Distribution and population
Vanellus gregarius breeds in northern and central Kazakhstan and south-central Russia (and, at least formerly, Xinjiang province, western China [Kamp et al. 2010]), dispersing through Kyrgyzstan, Tajikistan, Uzbekistan, Turkmenistan, Afghanistan, Armenia, Georgia, Azerbaijan, Iran, Iraq, Saudi Arabia, Syria, Turkey and Egypt, to key wintering sites in Israel, Eritrea, Sudan (see below) and north-west India (e.g. 45 birds in the Little Rann of Kutch in November 2007 [Deomurari 2007] and 30 at Great Rann of Kutch in November 2008 [J. Tiwari in litt. 2008]). Birds winter occasionally in Pakistan, Sri Lanka, Oman and UAE. The species has suffered a very rapid decline and range contraction. In northern Kazakhstan a decline of 40% during 1930-1960 was followed by a further halving of numbers during 1960-1987.

More recent fieldwork has shown the population to be larger than once feared. Surveys in 2006 in Kazakhstan counted 376 breeding pairs in an area of 145,000 km2. Extrapolating this population density across the breeding range yields a possible total population size of 5,600 breeding pairs (Sheldon et al. 2006), i.e. 11,200 mature individuals. A satellite-tagged bird from central Kazakhstan was located in Turkey in October 2007 in a flock of 3,200 individuals (R. Sheldon in litt. 2007, 2008, Biricik 2009), even larger than the total of simultaneous counts of over 1,500, maybe as high as 2,000, in northern Syria and 1,000 individuals in south-eastern Turkey in March 2007 (Anon. 2007, Bozdogan et al. 2007, Hofland and Keijl 2008). Two tagged birds were then tracked to wintering quarters in Sudan in February 2008 (P. Donald and R. Sheldon verbally 2008), indicating that the sites in the Middle East are used for stopping over en route to Africa. Surveys in September 2009 confirmed the importance of the Manych depression in south Russia as a stopover site with estimates of up to 2,000 individuals (Koshkin 2010). Estimates of productivity and survival on core breeding grounds in central Kazakhstan between 2005-2012 suggest that the population is in slight to severe decline, with a mean annual estimate of population growth rate of 0.81 (95 % C.I. 0.64–0.98), while after five years of relative stability the number of nests in the same area declined rapidly after 2010 (Sheldon et al. 2013). However, breeding site fidelity and natal philopatry were low and colonies fluctuated greatly in size between years, making estimation of population trends and survival difficult (Sheldon et al. 2013).

Population justification
Surveys in 2006 in Kazakhstan estimated 376 breeding pairs in an area of 145,000 km2. Extrapolating this population density across the breeding range yields a possible total population size of 5,600 breeding pairs, i.e. 11,200 mature individuals, roughly equivalent to 16,000-17,000 individuals in total; but work is continuing in order to refine this estimate. This total is consistent with record counts of 3,200 individuals in Turkey in October 2007.

Trend justification
It has suffered a very rapid decline and range contraction. In northern Kazakhstan, a decline of 40% during 1930-1960, was followed by a further halving of numbers during 1960-1987. However, recent fieldwork in central Kazakhstan (centred on Korgalzhyn), suggests that the population trend is now stable and possibly starting to increase (e.g. the number of nests in a constant survey area around Korgalzhyn increased from 85 in 2005 to 107 in 2006 and 113 in 2007 (Sheldon et al. 2005, M. A. Koshkin, J. Kamp and R. D. Sheldon in litt. 2007); similarly numbers of nests in a constant area of 10,000 km2 around Pavlodar, north-east Kazakhstan were 67 in 1985, 55 in 1991, and 140 in 2007 (J. Kamp in litt. 2007). It is not known if this is a consistent trend across the species's range however, and a global decline of >50% is still precautionarily inferred for the past 27 years (three generations), with an even steeper decline projected for the next three generations owing to potentially severe threats. Further fieldwork may provide data that leads to revision of these estimates.

Behaviour This species is migratory (del Hoyo et al. 1996). It breeds semi-colonially in small groups of 3-20 pairs (del Hoyo et al. 1996) from mid-April until July, and begins the migration south in August or September (del Hoyo et al. 1996) (occasionally as late as October [R. Sheldon in litt. 2007, 2008]). Flocks of several thousand birds have been known to gather before migration in Siberia and Kazakhstan (Johnsgard 1981, R. Sheldon in litt. 2007, 2008), but migration itself usually occurs in small groups of 15-20 birds (Johnsgard 1981, del Hoyo et al. 1996). In Syria, it arrives yearly around mid-February to late March, and again in Autumn (Hofland and Keijl 2008). It arrives on its wintering grounds in India and Pakistan by September-October, and in Sudan by late October (del Hoyo et al. 1996). Small flocks of similar size to those observed on migration are usual on the wintering grounds (Johnsgard 1981), although very occasionally larger flocks of over 100 birds have been recorded (Johnsgard 1981). It departs the wintering grounds in March or early April, arriving on its breeding range from mid April (del Hoyo et al. 1996).

Breeding It breeds mainly in the transition zones between Stipa and Artemisia grassland steppes where bare saline areas occur near water-bodies. It uses dry wasteland, cultivated, ploughed and stubble fields (del Hoyo et al. 1996). Nests are preferentially placed in areas of Artemisia where there is a high dung abundance and vegetation is short (Watson et al. 2006). Steppes that are densely vegetated may be avoided (Johnsgard 1981), however areas with a low percentage of bare ground and high percentage of tall vegetation are preferred by chicks, and may be important for providing cover from predators (Watson et al. 2006). It has been postulated that it evolved to nest in habitats created by migratory Saiga Saiga tatarica (e.g. Watson et al. 2006), but this is unlikely given the timing of Saiga movements relative to Sociable Lapwing breeding, the speed with which they pass through areas, and the very short swards favoured by the birds; nevertheless Saiga grazing combined with fires may have promoted optimal habitat (Kamp 2007). Suitable habitat probably occurred naturally in sparsely vegetated solonchaks and areas recently burnt by steppe fires, but are now most abundant in the periphery of villages, at least in central Kazakhstan (M. A. Koshkin, J. Kamp and R. D. Sheldon in litt. 2007). Around such villages, there is a strong positive correlation between grazing intensity and the density of nests (Kamp et al. 2009). Non-breeding On migration it uses mainly sandy plains with short grass, dry meadows, fallow land and cultivated fields (del Hoyo et al. 1996). The wintering grounds are burnt steppe and savannah, dry plains, sandy wastes, harvested millet fields, damp pastures and short grass areas, often adjacent to water (del Hoyo et al. 1996). In Arabia it often occurs in the desert near the coast (del Hoyo et al. 1996). Nest survival in central Kazakhstan between 2005 and 2012 was higher closer to human settlements, despite higher trampling rates, and when there were more neighbouring nests, but distance to settlements and colony density both varied systematically between years (Sheldon et al. 2013).

Diet It feeds chiefly on insects including Orthoptera, Coleoptera, and moth larvae (del Hoyo et al. 1996). It also takes arachnids and frequently small amounts of plant matter including grains, leaves and flowers (del Hoyo et al. 1996). Small stones are often found in the stomach, occasionally along with the remains of small vertebrate bones and mollusc shells (del Hoyo et al. 1996). The diet is more varied during the breeding season, being limited mainly to orthopterans and other insects during the non-breeding season (del Hoyo et al. 1996).

Breeding site
The nest is a scrape that is unlined or lined with plant material, pebbles and debris (del Hoyo et al. 1996). It is usually found on bare saline patches or in short vegetation near to water (del Hoyo et al. 1996). Nest survival during the egg stage varies between years, owing to varying levels of predation by fox Vulpes vulpes, polecat, long-eared hedgehog and souslik species, and trampling by cattle, and in particular, sheep and goats (M. A. Koshkin, J. Kamp and R. D. Sheldon in litt. 2007).

Key factors explaining the magnitude of declines remain poorly understood, despite much recent research. On the breeding grounds, it was probably formerly threatened by the conversion of steppe to arable cultivation, plus, perhaps less likely, the reduction in grazing by large herds of native ungulates and, latterly, by the loss of the enormous herds of domestic grazing animals from state-sponsored collective farms (Eichhorn and Khrokov 2002, Watson et al. 2006). However, since the collapse of the Soviet Union, large areas of arable cultivation have been abandoned and are reverting to natural steppe habitat, herds of domestic livestock have become concentrated around villages (where their permanent presence leads to shorter swards than were created by the vast herds that grazed semi-nomadically under the Soviet system), while an increase in fires (owing to reduced control of fires) may also have contributed to an increase in suitable habitat. These factors may be behind the possible increase in numbers (at least in parts of Kazakhstan) in recent years (Watson et al. 2006, M. A. Koshkin, J. Kamp and R. D. Sheldon in litt. 2007).

Concentration of nests in heavily grazed areas in the vicinity of villages may have increased threats from human disturbance and trampling by sheep, goats and possibly other livestock (Watson et al. 2006, M. A. Koshkin, J. Kamp and R. D. Sheldon in litt. 2007). Low egg survival due to nesting in areas of high grazer density has been suggested as one of the causes for the species' decline (Watson et al. 2006). Nest predation by Rooks Corvus frugilegus - which have expanded widely into the breeding range with the plantation of networks of shelter-belts (Belik 2005) - was previously suggested as a cause of declines, but data from central Kazakhstan indicate this is unlikely (Watson et al. 2006, M. A. Koshkin, J. Kamp and R. D. Sheldon in litt. 2007). The species may be affected by the increasingly dry climate in its breeding and wintering range, but it is not clear if this benefits or threatens this semi-desert species (Watson et al. 2006).

Illegal hunting during migration and on the wintering grounds may now be the primary threat (M. A. Koshkin, J. Kamp and R. D. Sheldon in litt. 2007, Biricik et al. 2008). Data from 2005-2012 suggest that low adult survival, perhaps resulting from known hunting pressure along the migration routes, appears to be the most critical demographic rate (Sheldon et al. 2013).

Conservation Actions Underway
CMS Appendix I and II. An international species action plan was published in 2004. It is legally protected in Armenia, Kazakhstan, Russia, Turkmenistan, Ukraine and Uzbekistan, but this is generally not enforced (Belik 2005). An intensive research project at the breeding sites in central Kazakhstan has been running since 2004 (Cresswell et al. 2005, Watson et al. 2006). In 2005 the Sociable Lapwing research project was initiated in Kazakhstan by a team from the RSPB and the Association for the Biodiversity Protection in Kazakhstan (ACBK) in order to understand the causes of the species's decline. In 2006 the team secured funding through the UK Government's Darwin Initiative programme that will allow work to continue until 2009. A survey of historical breeding sites in the South Urals was conducted in 2005 (Morozov and Kornev 2005) and another at passage sites in south-west Russia was carried out in 2006 (Field et al. 2006). Coordinated counts were undertaken at key passage/wintering sites in Syria and Turkey in March 2007 (Anon. 2007). A project was initiated in Turkey in 2008 to gain a better understanding of stopover sites used by the species in Turkey during migration (Biricik et al. 2008). A satellite-tagging project began in central Kazahstan aims to provide information on the species’s migration. Hunting in Syria has been identified as a major threat with measures being implemented to control it. The inaugural meeting of the International Sociable Lapwing Working Group was held in Palmyra, Syria in March 2011. The group agreed on conservation measures required by each country, and planned cross-border actions to protect the species across its extensive range.
Conservation Actions Proposed
Continue research in Kazakhstan (and initiate in Russia) on breeding biology, habitat requirements and migration, including colour-ringing and satellite tracking to determine movements. Continue surveys of breeding range in Kazakhstan, potential breeding range in Russia and western China, and wintering/passage sites in Middle East and Africa (including determining periods when birds are present). Continue to monitor trends on breeding grounds and at key passage/winter sites. Identify and evaluate key threats on breeding, passage and wintering grounds. Investigate the importance of hunting on passage/wintering grounds. Review International Species Action Plan in the light of recent research on the breeding grounds and identification of key passage/wintering sites. Develop national species action plans, at least for Kazakhstan and key passage/wintering countries. At breeding colonies sensitive to trampling by sheep during nesting period, work with local shepherds to minimise disturbance. Control hunting on wintering/passage sites.

Related state of the world's birds case studies

Anon. 2007. Sociable Lapwing "jackpot". World Birdwatch 29(2): 4.

Belik, V. P. 2005. The Sociable Lapwing in Eurasia: what does the future hold? British Birds 98: 476-485.

Biricik, M. 2009. Unexpectedly large number of Sociable Lapwings Vanellus gregarius on autumn migration in Turkey and some remarks on the stopover site. Sandgrouse 31(1): 15-17.

Biricik, M.; Deniz, H.; Mungan, R.; Akarsu, F.; Ataol, M.; Balkiz, O. 2008. Sociable Lapwing (Vanellus gregarius) 2008 field report.

Bozdogan, M.; Balkiz, O.; Tavares, J. 2007. Survey of Social Lapwing (Vanellus gregarius) in southeastern Anatolia during early Spring 2007.

Collar, N. J.; Crosby, M. J.; Stattersfield, A. J. 1994. Birds to watch 2: the world list of threatened birds. BirdLife International, Cambridge, U.K.

Cresswell, W.; Donald. P; Khrokov, V. 2005. Ongoing research on Sociable Lapwings - an update. British Birds 98: 496-497.

del Hoyo, J.; Elliott, A.; Sargatal, J. 1996. Handbook of the Birds of the World, vol. 3: Hoatzin to Auks. Lynx Edicions, Barcelona, Spain.

Deomurari, A. 2007. Western India: Gujarat Kutch Birding and Wildlife Tour, November 2007..

Eichhorn, G.; Khrokov, V. V. 2002. Decline in breeding Sociable Plover Chettusia gregaria in the steppes of Naurzum and Korgalzhyn, Kazakhstan. Sandgrouse 24: 22-27.

Field, R.; Gordon, J.; Kushkin, M.; Field, K.; Gordon, O.; Kucheryavaya, N.; Fedosov, V.; Malovichko, L. 2006. Preliminary surveys of Chagraiskoje reservoir, south-west Russian Federation, for Sociable Lapwing Vanellus gregarius.

Hofland, R.; Keijl, G. 2008. Syrian Sociable Lapwing survey. Foundation Working Group International Waterbird and Wetland Research, Beek-Ubbergen, The Netherlands.

Johnsgard, P. A. 1981. The plovers, sandpipers and snipes of the world. University of Nebraska Press, Lincoln, U.S.A. and London.

Kamp, J. 2007. Habitat selection of the Sociable Lapwing Vanellus gregarius in Central Kazakhstan - a modelling approach. Diploma, Carl von Ossietzky Universität.

Kamp, J.; Sheldon, R. D.; Koshkin, M. A.; Donald, P. F.; Biedermann, R. 2009. Post-Soviet steppe management causes pronounced synanthropy in the globally threatened Sociable Lapwing Vanellus gregarius. Ibis 151: 452-463.

Morozov, V.V.; Kornev, S.V. 2005. Survey of the Sociable Plover Vanellus gregarius in the South Urals, May 2005. Wader Study Group Bulletin 108: 27.

Murdoch, D. and Blair, M. 2007. Photospot: sociable lapwing (Vanellus gregarious) in Syria. Sandgrouse 29(1): 97-98.

Sheldon, R. D.; Grishina, K. V.; Kamp, J.; Khrokov, V. V.; Knight, A.; Kushkin, M. A. 2006. Revising the breeding population estimate and distribution of the Critically Endangered Sociable Lapwing Vanellus gregarius.

Sheldon, R. D.; Kamp, J.; Koshkin, M. A.; Urazaliev, R. S.; Iskakov, T. K.; Field, R. H.; Salemgareev, A. R.; Khrokov, V. V.; Zhuly, V. A.; Sklyarenko, S. L.; Donald, P. F. 2013. Breeding ecology of the globally threatened Sociable Lapwing Vanellus gregarius and the demographic drivers of recent declines. Journal of Ornithology 154(2): 501-516.

Sheldon, R.; Koshkin, M.; Kamp, J.; Khrokov, V.; Donald, P. 2005. Sociable Lapwing Vanellus gregarius - preliminary fieldwork report 2005.

Tomkovich, P. S.; Lebedeva, E. 2002. International Action Plan for social lapwing.

Tucker, G. M.; Heath, M. F. 1994. Birds in Europe: their conservation status. BirdLife International, Cambridge, U.K.

Watson, M.; Wilson, J. M.; Koshkin, M.; Sherbakov, B.; Karpov, F.; Gavrilov, A.; Schielzeth, H.; Brombacher, M.; Collar, N.J.; Cresswell, W. 2006. Nest survival and productivity of the critically endangered Sociable Lapwing Vanellus gregarius. Ibis 148: 489-502.

Further web sources of information
Detailed regional assessment and species account from the European Red List of Birds (BirdLife International, 2015)

African-Eurasian Waterbird Agreement (AEWA) International Action Plan 2004

Detailed species account from Birds in Europe: population estimates, trends and conservation status (BirdLife International 2004)

Detailed species accounts from the Threatened birds of Asia: the BirdLife International Red Data Book (BirdLife International 2001).

Explore HBW Alive for further information on this species

Search for photos and videos, and hear sounds of this species from the Internet Bird Collection

Species Guardian Action Update

Text account compilers
Benstead, P., Butchart, S., Calvert, R., Ekstrom, J., Pilgrim, J., Pople, R. & Symes, A.

Al-Jbour, S., Balkiz, O., Donald, P., Hofland, R., Kamp, J., Khrokov, V., Koshkin, M., Morozov, V., Sheldon, R. & Tavares, J.

Recommended citation
BirdLife International (2015) Species factsheet: Vanellus gregarius. Downloaded from on 04/10/2015. Recommended citation for factsheets for more than one species: BirdLife International (2015) IUCN Red List for birds. Downloaded from on 04/10/2015.

This information is based upon, and updates, the information published in BirdLife International (2000) Threatened birds of the world. Barcelona and Cambridge, UK: Lynx Edicions and BirdLife International, BirdLife International (2004) Threatened birds of the world 2004 CD-ROM and BirdLife International (2008) Threatened birds of the world 2008 CD-ROM. These sources provide the information for species accounts for the birds on the IUCN Red List.

To provide new information to update this factsheet or to correct any errors, please email BirdLife

To contribute to discussions on the evaluation of the IUCN Red List status of Globally Threatened Birds, please visit BirdLife's Globally Threatened Bird Forums.

Additional resources for this species

ARKive species - Sociable lapwing (Vanellus gregarius) 0

Key facts
Current IUCN Red List category Critically Endangered
Family Charadriidae (Plovers)
Species name author (Pallas, 1771)
Population size 11200 mature individuals
Population trend Decreasing
Distribution size (breeding/resident) 1,500,000 km2
Country endemic? No
Links to further information
- Additional Information on this species
- 2015 European Red List assessment